extension | φ:Q→Aut N | d | ρ | Label | ID |
(C22×C8)⋊1C4 = C23.21C42 | φ: C4/C1 → C4 ⊆ Aut C22×C8 | 32 | | (C2^2xC8):1C4 | 128,14 |
(C22×C8)⋊2C4 = C23.8D8 | φ: C4/C1 → C4 ⊆ Aut C22×C8 | 32 | | (C2^2xC8):2C4 | 128,21 |
(C22×C8)⋊3C4 = C23.2C42 | φ: C4/C1 → C4 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8):3C4 | 128,123 |
(C22×C8)⋊4C4 = (C22×C8)⋊C4 | φ: C4/C1 → C4 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8):4C4 | 128,127 |
(C22×C8)⋊5C4 = (C2×D4).24Q8 | φ: C4/C1 → C4 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8):5C4 | 128,544 |
(C22×C8)⋊6C4 = C2×C4.9C42 | φ: C4/C1 → C4 ⊆ Aut C22×C8 | 32 | | (C2^2xC8):6C4 | 128,462 |
(C22×C8)⋊7C4 = C2×M4(2)⋊4C4 | φ: C4/C1 → C4 ⊆ Aut C22×C8 | 32 | | (C2^2xC8):7C4 | 128,475 |
(C22×C8)⋊8C4 = C23.5C42 | φ: C4/C1 → C4 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8):8C4 | 128,489 |
(C22×C8)⋊9C4 = C2×C22.7C42 | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8):9C4 | 128,459 |
(C22×C8)⋊10C4 = C23.29C42 | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8):10C4 | 128,461 |
(C22×C8)⋊11C4 = C2×C22.4Q16 | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8):11C4 | 128,466 |
(C22×C8)⋊12C4 = C24.132D4 | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8):12C4 | 128,467 |
(C22×C8)⋊13C4 = C8×C22⋊C4 | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8):13C4 | 128,483 |
(C22×C8)⋊14C4 = C23.22D8 | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8):14C4 | 128,540 |
(C22×C8)⋊15C4 = C22×C2.D8 | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8):15C4 | 128,1640 |
(C22×C8)⋊16C4 = C2×C23.25D4 | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8):16C4 | 128,1641 |
(C22×C8)⋊17C4 = C24.133D4 | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8):17C4 | 128,539 |
(C22×C8)⋊18C4 = C22×C4.Q8 | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8):18C4 | 128,1639 |
(C22×C8)⋊19C4 = C23.36C42 | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8):19C4 | 128,484 |
(C22×C8)⋊20C4 = C22×C8⋊C4 | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8):20C4 | 128,1602 |
(C22×C8)⋊21C4 = C2×C8○2M4(2) | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8):21C4 | 128,1604 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C22×C8).1C4 = C42.3Q8 | φ: C4/C1 → C4 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).1C4 | 128,15 |
(C22×C8).2C4 = C42.25D4 | φ: C4/C1 → C4 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).2C4 | 128,22 |
(C22×C8).3C4 = C42.27D4 | φ: C4/C1 → C4 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).3C4 | 128,24 |
(C22×C8).4C4 = C24.2Q8 | φ: C4/C1 → C4 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).4C4 | 128,25 |
(C22×C8).5C4 = C23⋊C16 | φ: C4/C1 → C4 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).5C4 | 128,46 |
(C22×C8).6C4 = C23.1M4(2) | φ: C4/C1 → C4 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).6C4 | 128,53 |
(C22×C8).7C4 = C22.M5(2) | φ: C4/C1 → C4 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).7C4 | 128,54 |
(C22×C8).8C4 = C22⋊C4.C8 | φ: C4/C1 → C4 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).8C4 | 128,60 |
(C22×C8).9C4 = C23.3C42 | φ: C4/C1 → C4 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).9C4 | 128,124 |
(C22×C8).10C4 = (C2×C8).103D4 | φ: C4/C1 → C4 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).10C4 | 128,545 |
(C22×C8).11C4 = C8.19M4(2) | φ: C4/C1 → C4 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).11C4 | 128,898 |
(C22×C8).12C4 = C42.20D4 | φ: C4/C1 → C4 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).12C4 | 128,7 |
(C22×C8).13C4 = C42.2Q8 | φ: C4/C1 → C4 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).13C4 | 128,13 |
(C22×C8).14C4 = C42.2C8 | φ: C4/C1 → C4 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).14C4 | 128,107 |
(C22×C8).15C4 = M5(2)⋊C4 | φ: C4/C1 → C4 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).15C4 | 128,109 |
(C22×C8).16C4 = C23.C16 | φ: C4/C1 → C4 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).16C4 | 128,132 |
(C22×C8).17C4 = C2×C4.10C42 | φ: C4/C1 → C4 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).17C4 | 128,463 |
(C22×C8).18C4 = C2×C16⋊C4 | φ: C4/C1 → C4 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).18C4 | 128,841 |
(C22×C8).19C4 = C2×C23.C8 | φ: C4/C1 → C4 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).19C4 | 128,846 |
(C22×C8).20C4 = M5(2).19C22 | φ: C4/C1 → C4 ⊆ Aut C22×C8 | 32 | 4 | (C2^2xC8).20C4 | 128,847 |
(C22×C8).21C4 = C2.C82 | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).21C4 | 128,5 |
(C22×C8).22C4 = C42.385D4 | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).22C4 | 128,9 |
(C22×C8).23C4 = C22.7M5(2) | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).23C4 | 128,106 |
(C22×C8).24C4 = C42.7C8 | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).24C4 | 128,108 |
(C22×C8).25C4 = C22⋊C32 | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).25C4 | 128,131 |
(C22×C8).26C4 = C8×M4(2) | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).26C4 | 128,181 |
(C22×C8).27C4 = C23.27C42 | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).27C4 | 128,184 |
(C22×C8).28C4 = C2×C4.C42 | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).28C4 | 128,469 |
(C22×C8).29C4 = C2×C22⋊C16 | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).29C4 | 128,843 |
(C22×C8).30C4 = C2×C4⋊C16 | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).30C4 | 128,881 |
(C22×C8).31C4 = C4⋊M5(2) | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).31C4 | 128,882 |
(C22×C8).32C4 = C42.13C8 | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).32C4 | 128,894 |
(C22×C8).33C4 = C2×C8⋊1C8 | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).33C4 | 128,295 |
(C22×C8).34C4 = C8⋊7M4(2) | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).34C4 | 128,299 |
(C22×C8).35C4 = C24.19Q8 | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).35C4 | 128,542 |
(C22×C8).36C4 = C42.42Q8 | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).36C4 | 128,296 |
(C22×C8).37C4 = C2×C8.C8 | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).37C4 | 128,884 |
(C22×C8).38C4 = C22×C8.C4 | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).38C4 | 128,1646 |
(C22×C8).39C4 = C2×C8⋊2C8 | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).39C4 | 128,294 |
(C22×C8).40C4 = C8⋊8M4(2) | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).40C4 | 128,298 |
(C22×C8).41C4 = C42.43Q8 | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).41C4 | 128,300 |
(C22×C8).42C4 = C2×C8⋊C8 | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).42C4 | 128,180 |
(C22×C8).43C4 = C82⋊C2 | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).43C4 | 128,182 |
(C22×C8).44C4 = C8⋊9M4(2) | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).44C4 | 128,183 |
(C22×C8).45C4 = C2×C16⋊5C4 | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 128 | | (C2^2xC8).45C4 | 128,838 |
(C22×C8).46C4 = C4×M5(2) | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).46C4 | 128,839 |
(C22×C8).47C4 = C24.5C8 | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 32 | | (C2^2xC8).47C4 | 128,844 |
(C22×C8).48C4 = C42.6C8 | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).48C4 | 128,895 |
(C22×C8).49C4 = C2×M6(2) | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).49C4 | 128,989 |
(C22×C8).50C4 = C22×M5(2) | φ: C4/C2 → C2 ⊆ Aut C22×C8 | 64 | | (C2^2xC8).50C4 | 128,2137 |