extension | φ:Q→Aut N | d | ρ | Label | ID |
(C22xC8).1C4 = C42.3Q8 | φ: C4/C1 → C4 ⊆ Aut C22xC8 | 64 | | (C2^2xC8).1C4 | 128,15 |
(C22xC8).2C4 = C42.25D4 | φ: C4/C1 → C4 ⊆ Aut C22xC8 | 64 | | (C2^2xC8).2C4 | 128,22 |
(C22xC8).3C4 = C42.27D4 | φ: C4/C1 → C4 ⊆ Aut C22xC8 | 64 | | (C2^2xC8).3C4 | 128,24 |
(C22xC8).4C4 = C24.2Q8 | φ: C4/C1 → C4 ⊆ Aut C22xC8 | 32 | | (C2^2xC8).4C4 | 128,25 |
(C22xC8).5C4 = C23:C16 | φ: C4/C1 → C4 ⊆ Aut C22xC8 | 32 | | (C2^2xC8).5C4 | 128,46 |
(C22xC8).6C4 = C23.1M4(2) | φ: C4/C1 → C4 ⊆ Aut C22xC8 | 32 | 4 | (C2^2xC8).6C4 | 128,53 |
(C22xC8).7C4 = C22.M5(2) | φ: C4/C1 → C4 ⊆ Aut C22xC8 | 64 | | (C2^2xC8).7C4 | 128,54 |
(C22xC8).8C4 = C22:C4.C8 | φ: C4/C1 → C4 ⊆ Aut C22xC8 | 32 | 4 | (C2^2xC8).8C4 | 128,60 |
(C22xC8).9C4 = C23.3C42 | φ: C4/C1 → C4 ⊆ Aut C22xC8 | 32 | 4 | (C2^2xC8).9C4 | 128,124 |
(C22xC8).10C4 = (C2xC8).103D4 | φ: C4/C1 → C4 ⊆ Aut C22xC8 | 32 | 4 | (C2^2xC8).10C4 | 128,545 |
(C22xC8).11C4 = C8.19M4(2) | φ: C4/C1 → C4 ⊆ Aut C22xC8 | 32 | 4 | (C2^2xC8).11C4 | 128,898 |
(C22xC8).12C4 = C42.20D4 | φ: C4/C1 → C4 ⊆ Aut C22xC8 | 64 | | (C2^2xC8).12C4 | 128,7 |
(C22xC8).13C4 = C42.2Q8 | φ: C4/C1 → C4 ⊆ Aut C22xC8 | 64 | | (C2^2xC8).13C4 | 128,13 |
(C22xC8).14C4 = C42.2C8 | φ: C4/C1 → C4 ⊆ Aut C22xC8 | 32 | | (C2^2xC8).14C4 | 128,107 |
(C22xC8).15C4 = M5(2):C4 | φ: C4/C1 → C4 ⊆ Aut C22xC8 | 64 | | (C2^2xC8).15C4 | 128,109 |
(C22xC8).16C4 = C23.C16 | φ: C4/C1 → C4 ⊆ Aut C22xC8 | 32 | 4 | (C2^2xC8).16C4 | 128,132 |
(C22xC8).17C4 = C2xC4.10C42 | φ: C4/C1 → C4 ⊆ Aut C22xC8 | 32 | | (C2^2xC8).17C4 | 128,463 |
(C22xC8).18C4 = C2xC16:C4 | φ: C4/C1 → C4 ⊆ Aut C22xC8 | 32 | | (C2^2xC8).18C4 | 128,841 |
(C22xC8).19C4 = C2xC23.C8 | φ: C4/C1 → C4 ⊆ Aut C22xC8 | 32 | | (C2^2xC8).19C4 | 128,846 |
(C22xC8).20C4 = M5(2).19C22 | φ: C4/C1 → C4 ⊆ Aut C22xC8 | 32 | 4 | (C2^2xC8).20C4 | 128,847 |
(C22xC8).21C4 = C2.C82 | φ: C4/C2 → C2 ⊆ Aut C22xC8 | 128 | | (C2^2xC8).21C4 | 128,5 |
(C22xC8).22C4 = C42.385D4 | φ: C4/C2 → C2 ⊆ Aut C22xC8 | 128 | | (C2^2xC8).22C4 | 128,9 |
(C22xC8).23C4 = C22.7M5(2) | φ: C4/C2 → C2 ⊆ Aut C22xC8 | 128 | | (C2^2xC8).23C4 | 128,106 |
(C22xC8).24C4 = C42.7C8 | φ: C4/C2 → C2 ⊆ Aut C22xC8 | 32 | | (C2^2xC8).24C4 | 128,108 |
(C22xC8).25C4 = C22:C32 | φ: C4/C2 → C2 ⊆ Aut C22xC8 | 64 | | (C2^2xC8).25C4 | 128,131 |
(C22xC8).26C4 = C8xM4(2) | φ: C4/C2 → C2 ⊆ Aut C22xC8 | 64 | | (C2^2xC8).26C4 | 128,181 |
(C22xC8).27C4 = C23.27C42 | φ: C4/C2 → C2 ⊆ Aut C22xC8 | 64 | | (C2^2xC8).27C4 | 128,184 |
(C22xC8).28C4 = C2xC4.C42 | φ: C4/C2 → C2 ⊆ Aut C22xC8 | 64 | | (C2^2xC8).28C4 | 128,469 |
(C22xC8).29C4 = C2xC22:C16 | φ: C4/C2 → C2 ⊆ Aut C22xC8 | 64 | | (C2^2xC8).29C4 | 128,843 |
(C22xC8).30C4 = C2xC4:C16 | φ: C4/C2 → C2 ⊆ Aut C22xC8 | 128 | | (C2^2xC8).30C4 | 128,881 |
(C22xC8).31C4 = C4:M5(2) | φ: C4/C2 → C2 ⊆ Aut C22xC8 | 64 | | (C2^2xC8).31C4 | 128,882 |
(C22xC8).32C4 = C42.13C8 | φ: C4/C2 → C2 ⊆ Aut C22xC8 | 64 | | (C2^2xC8).32C4 | 128,894 |
(C22xC8).33C4 = C2xC8:1C8 | φ: C4/C2 → C2 ⊆ Aut C22xC8 | 128 | | (C2^2xC8).33C4 | 128,295 |
(C22xC8).34C4 = C8:7M4(2) | φ: C4/C2 → C2 ⊆ Aut C22xC8 | 64 | | (C2^2xC8).34C4 | 128,299 |
(C22xC8).35C4 = C24.19Q8 | φ: C4/C2 → C2 ⊆ Aut C22xC8 | 32 | | (C2^2xC8).35C4 | 128,542 |
(C22xC8).36C4 = C42.42Q8 | φ: C4/C2 → C2 ⊆ Aut C22xC8 | 64 | | (C2^2xC8).36C4 | 128,296 |
(C22xC8).37C4 = C2xC8.C8 | φ: C4/C2 → C2 ⊆ Aut C22xC8 | 32 | | (C2^2xC8).37C4 | 128,884 |
(C22xC8).38C4 = C22xC8.C4 | φ: C4/C2 → C2 ⊆ Aut C22xC8 | 64 | | (C2^2xC8).38C4 | 128,1646 |
(C22xC8).39C4 = C2xC8:2C8 | φ: C4/C2 → C2 ⊆ Aut C22xC8 | 128 | | (C2^2xC8).39C4 | 128,294 |
(C22xC8).40C4 = C8:8M4(2) | φ: C4/C2 → C2 ⊆ Aut C22xC8 | 64 | | (C2^2xC8).40C4 | 128,298 |
(C22xC8).41C4 = C42.43Q8 | φ: C4/C2 → C2 ⊆ Aut C22xC8 | 64 | | (C2^2xC8).41C4 | 128,300 |
(C22xC8).42C4 = C2xC8:C8 | φ: C4/C2 → C2 ⊆ Aut C22xC8 | 128 | | (C2^2xC8).42C4 | 128,180 |
(C22xC8).43C4 = C82:C2 | φ: C4/C2 → C2 ⊆ Aut C22xC8 | 64 | | (C2^2xC8).43C4 | 128,182 |
(C22xC8).44C4 = C8:9M4(2) | φ: C4/C2 → C2 ⊆ Aut C22xC8 | 64 | | (C2^2xC8).44C4 | 128,183 |
(C22xC8).45C4 = C2xC16:5C4 | φ: C4/C2 → C2 ⊆ Aut C22xC8 | 128 | | (C2^2xC8).45C4 | 128,838 |
(C22xC8).46C4 = C4xM5(2) | φ: C4/C2 → C2 ⊆ Aut C22xC8 | 64 | | (C2^2xC8).46C4 | 128,839 |
(C22xC8).47C4 = C24.5C8 | φ: C4/C2 → C2 ⊆ Aut C22xC8 | 32 | | (C2^2xC8).47C4 | 128,844 |
(C22xC8).48C4 = C42.6C8 | φ: C4/C2 → C2 ⊆ Aut C22xC8 | 64 | | (C2^2xC8).48C4 | 128,895 |
(C22xC8).49C4 = C2xM6(2) | φ: C4/C2 → C2 ⊆ Aut C22xC8 | 64 | | (C2^2xC8).49C4 | 128,989 |
(C22xC8).50C4 = C22xM5(2) | φ: C4/C2 → C2 ⊆ Aut C22xC8 | 64 | | (C2^2xC8).50C4 | 128,2137 |